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Drought is one of the most frequent climate-related disasters occurring across large portions of the African

continent, often with devastating consequences for the food security of agricultural households. This study

proposes a novel method for calculating the empirical probability of having a significant proportion of the

total agricultural area affected by drought at sub-national level. First, we used the per-pixel Vegetation Health

Index (VHI) from the Advanced Very High Resolution Radiometer (AVHRR) averaged over the crop season as

main drought indicator. A phenological model based on NDVI was employed for defining the start of season

(SOS) and end of the grain filling stage (GFS) dates. Second, the per-pixel average VHI was aggregated for

agricultural areas at sub-national level in order to obtain a drought intensity indicator. Seasonal VHI averaging

according to the phenological model proved to be a valid drought indicator for the African continent, and is

highly correlated with the drought events recorded during the period (1981–2009). The final results express

the empirical probability of drought occurrence over both the temporal and the spatial domain, representing a

promising tool for future drought monitoring.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Droughts can have devastating effects on water supply, crop

production, and rearing of livestock. They may lead to famine,

malnutrition, epidemics and displacement of large populations from

one area to another. The agricultural droughts across Africa of the

1980s and early 1990s have affected many countries and people and

were probably some of the most shocking famine emergencies in

recent history (Gommes & Petrassi, 1994). The International Disaster

database of the Centre for Research on the Epidemiology of Disasters

(CRED), reports more than 0.5 million deaths and 253 million people

affected by drought events during the last 30 years (1981–2010) in

Africa (EM-DAT, 2010). Table 1 summarizes the major droughts that

occurred in the continent during the last three decades.

Identification of drought prone areas and estimation of the

probability of drought occurrence are fundamental for the imple-

mentation of programmes that aim to increase food security. For risk

management programmes and for efficient food-aid delivery, know-

ing the probability of drought occurrence is of basic importance.

Furthermore, drought information at administrative levels is very

important for a better interpretation of potential effects of climate

change in Africa.

Drought risk calculation at continental scale is currently limited by

the scarcity of reliable rainfall data. The coverage of operational

weather stations in most African countries shows large spatial gaps

and individual stations often provide discontinuous data. Due to those

reasons, rainfall measurements are commonly replaced by data

generated by atmospheric circulation models and/or satellite obser-

vations. Commonly used rainfall datasets for monitoring food security

are the precipitation forecasts of the European Centre for Medium-

Range Weather Forecast (ECMWF) and the rainfall estimates (RFE)

produced by the Climate Prediction Centre (CPC) of the National

Oceanic and Atmospheric Administration (NOAA). Several other

sources exist, like for example the Tropical Rainfall MeasuringMission

(TRMM), the Tropical Applications of Meteorology using SATellite

(TAMSAT) products at Reading University, and the FAO rainfall

estimates (http://geonetwork3.fao.org/climpag/FAO-RFE.php). How-

ever, all the mentioned rainfall estimates contain errors and show

deviations in different regions of Africa (Dinku et al., 2007; Lim & Ho,

2000; Rojas et al., in press). At the same time, validation or better

calibration of these rainfall estimates is hindered by the scarce

availability of ground (rain gauge) measurements. This makes it

extremely difficult to assess the quality or reliability of each dataset,

which can have important implications for food security applications

(Verdin et al., 2005).

On the other hand, vegetation abundance and development

information, which is strongly related to rainfall, can also be used for

drought assessment. Field studies and airborne scanner experiments

(Tucker, 1979) demonstrated that the spectral reflectance properties of

Remote Sensing of Environment 115 (2011) 343–352

⁎ Corresponding author. Tel.: +39 0332 786337; fax: +39 0332 785162.

E-mail address: felix.rembold@jrc.ec.europa.eu (F. Rembold).

0034-4257/$ – see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2010.09.006

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse



vegetation canopies, and in particular combinations of the red and near

infrared reflectance (so called “vegetation indices” orVI), are very useful

formonitoringgreen vegetation. Among thedifferent VIs based on these

two spectral channels, is the NDVI (Normalized Difference Vegetation

Index), proposed by Deering (1978), which is the most popular

indicator for studying vegetation health and crop production (MacDo-

nald & Hall, 1980; Sellers, 1985). Research in vegetationmonitoring has

shown that NDVI is closely related to the LAI (leaf area index) and to the

photosynthetic activity of green vegetation. NDVI is an indirectmeasure

of primary productivity through its quasi-linear relationwith the fAPAR

(Fraction of Absorbed Photosynthetically Active Radiation) (Los, 1998;

Prince, 1990). NDVI is affected by some well known limitations as for

example effects of soil humidity and surface anisotropy. Composite

products used in most applications tend to limit these effects but they

cannot be ignored completely. As a consequence NDVI values may

slightly vary due to soil humidity and depending on the particular

anisotropy of the target as well as on the angular geometry of

illumination and observation at the time of the measurements. This is

particularly relevant for AVHRRderived data since the orbit of theNOAA

platforms tended to drift in time and the 25 years time series is

composed by data from several different sensors (Tucker et al., 2005).

At present, several time series of satellite derived vegetation

indices at the global scale and with a high temporal frequency are

freely available. These include MODIS (Moderate Resolution Imaging

Spectroradiometer), SPOT (Satellite Pour l'Observation de la Terre)

VEGETATION, and AVHRR (Advanced Very High Resolution Radiom-

eter). Although the spatial resolution is relatively low, AVHRR has the

longest time series and also offers the advantage of a thermal channel.

The AVHRR sensor was flown on different NOAA satellites since 1979.

A large number of derived products exist, which continue to be

updated until present. The main objective of this study is to evaluate

the probability of agricultural drought occurrence for the African

continent without depending on the scarcity and low quality of

rainfall data sets. For that purpose we use vegetation indices derived

from AVHRR data. Final probabilities are derived by aggregating

results at the sub-national administrative level.

2. Materials and methods

2.1. Data

Themain data used for this study are existing long term time series

of NOAA AVHRR data. Two series made available by different research

groups were combined in this work:

1) The Vegetation Health Index (VHI) produced by the Center for

Satellite Applications and Research (STAR) of the National

Environmental Satellite, Data and Information Service (NESDIS).

This data set consists of weekly VHI images at 16 km resolution for

the period 1981 (week 35)–2010 (week 11).1 http://www.star.

nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php

2) The Normalized Difference Vegetation Index (NDVI) dataset from

the NASA Global Inventory Monitoring and Modeling Systems

(GIMMS) Group at the Laboratory for Terrestrial Physics (Tucker

et al., 2005). This dataset consists of 15-day maximum-value

composites at 8 km resolution. We used the data from July 1981 to

December 2006 for the African window. http://glcf.umd.edu/data/

gimms/

Two additional spatial data sources were used for aggregating the

VHI over space: a crop mask and administrative regions boundaries.

The crop mask was constructed by using both the crop zones

developed by FAO in the 90s, and the Global Land Cover (GLC2000)

(Bartholomé & Belward, 2005). The administrative regions were

obtained from the Global Administrative Unit Layers (GAUL)

database. GAUL is an initiative implemented by FAO funded by the

European Commission http://www.foodsec.org/tools_gaul.htm. It

aims at providing the most reliable spatial information on adminis-

trative units for all the countries in the world. Here we used the first

sub-national administrative units (level 1) in order to have a

homogeneous reference layer at the continental scale. This implies

1 From week 36 of 1994 to week 3 of 1995 data are not present due to sensor

problems.

Table 1

Major droughts ocurred in the African Continent during the period 1980–2010.

Region 1980–89 1990–99 2000–09

Northern Africa In Morocco, agricultural output recorded losses

in 1992, 1995 and 1997 due to drought. In 1997,

Algeria's cereal harvest decreased sharply as a

result of severe drought (UNEP, 2002).

The most recent drought in Tunisia and Algeria

(from 1999-2002) appears to be the worst since the

mid-15th century. That's according to researchers

who recently analysed tree-ring records from the

region (http://environmentalresearchweb.org/cws.

article/news/35673).

West Africa The Sahel was hit by a severe drought in the

early-mid 1980's (Brooks, 2004). The worst

drought in the Sahel during this period occurred

during the year 1984 affecting most Sahel

countries (Gommes & Petrassi, 1994).

Eastern Africa The lowlands of Ethiopia and the main

productive areas of Kenya have been affected by

the 1984 drought (Gommes & Petrassi, 1994). In

Ethiopia, the 1984 drought caused the deaths of

about 1 million people, 1.5 million head of

livestock perished, and 8.7 million were affected

in all. In 1987, more than 5.2 million people in

Ethiopia, 1 million in Eritrea and 200 000 in

Somalia were severely affected (Drought

Monitoring Center, 2000).

Rainfall records indicate that, in some parts of the

sub-region, the drought in 2000 was worse than

that experienced in 1984 (Drought Monitoring

Center, 2000).

Southern Africa In 1982/83much of Southern Africawas severely

affected (Drought Monitoring Center, 2000).

Most of the Southern Africa countries were

severely affected by the 1991/92 drought, which

was the most severe after the 1982/83 drought

(Gommes & Petrassi, 1994). The drought of

1991/92 was the severest on record, causing a

54% reduction in cereal harvest and exposing

more than 17 million people to risk of starvation

(Calliham et al., 1994; UNEP, 2002).
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that according to the different political organizations of each country,

the size of individual units is highly variable.

2.2. Methodology

2.2.1. Vegetation Health Index (VHI)

For drought assessment we selected the Vegetation Health Index

(VHI) developed by Kogan (1995, 1997), who has successfully applied

it for numerous case studies in many different environmental

conditions around the globe, including Asia (Kogan et al., 2005;

Ramesh et al., 2003), Africa (Unganai & Kogan, 1998) , Europe (Kogan,

1986), North America (Kogan, 1995; Salazar et al., 2007) and South

America (Seiler et al., 2007). VHI is a composite index joining the

Vegetation Condition Index (VCI) and the Temperature Condition

Index (TCI).

The VCI (Kogan, 1994) is derived from the Normalized Difference

Vegetation Index (NDVI). It is a scaling of the NDVI between its

maximum and minimum value, and can be expressed as:

VCIi = 100* NDVIi–NDVIminð Þ= NDVImax–NDVIminð Þ ð1Þ

where NDVIi is the smoothed weekly NDVI, and NDVImax and NDVImin

are absolutemaximum andminimumNDVI, respectively, calculated for

each pixel and week during the period 1981–2010 of the smoothed

NDVI. VCI was designed to separate the weather related component of

NDVI from ecological factors (Kogan, 1994). In general the VCI captures

rainfall dynamics better than NDVI particularly in geographically

heterogeneous areas. The VCI not only reflects the spatial and temporal

vegetation variability but also allows quantifying the impact of weather

on vegetation (Kogan, 1994; Unganai & Kogan, 1998).

The TCI algorithm is similar to VCI, but relates to the brightness

temperature T estimated from the thermal infrared band of AVHRR

(channel 4). Kogan (1995) proposed this index to remove the effects

of cloud contamination in the satellite assessment of vegetation

condition due to the fact that the AVHRR channel 4 is less sensitive to

water vapor in the atmosphere compared with the visible light

channels. High temperatures in the middle of the season indicate

unfavorable or drought conditions while low temperature indicates

mostly favorable conditions (Kogan, 1995). The expression conse-

quently is:

TCIi = 100* Tmax–Tið Þ= Tmax–Tminð Þ ð2Þ

VHI is expressed as:

VHIi = w1*VCIi + w2*TCIi; ð3Þ

It is the additive combination of VCI and TCI for week i. In some

studies different weights (w1 andw2) are assigned to VCI and TCI. For

example, Unganai and Kogan (1998) determined the weights based

on the correlation between VCI and TCI with corn yield anomalies. In

near normal conditions, vegetation is more sensitive to moisture

during canopy formation (leaf appearance) and to temperature

during flowering. Since moisture and temperature contribution

during the crop cycle is currently not known, we assume that the

share of weekly VCI and TCI is equal (w1=w2=0.5).

2.2.2. Agricultural crop mask

In order to assess agricultural drought we created an agricultural

crop mask for the African continent, using the FAO GIEWS main crop

zones and the GLC2000 land cover map. We first took the total extent

of the FAO main crop zones for the following annual crops: pulses,

sorghum, wheat, millet, teff, maize, niebe, yams, rice and barley. The

zones are rather coarse and often overlapping. We therefore used the

more detailed GLC2000 to refine the mask by excluding bare soils and

forest. Instead of using directly the GLC2000 agricultural classes we

preferred an exclusion approach. The main reason for this is that the

GLC2000 forest and bare soil classes have shown a higher accuracy

than the agricultural classes (Mayaux et al., 2004).The combination of

the described steps resulted in a single crop mask for Africa.

2.2.3. Determination of the optimal VHI integration period for agricultural

areas (temporal aggregation)

VHI can detect drought conditions at any time of the year. For

agriculture, however, we are only interested in the period most

sensitive for crop growth (vegetative stage, flowering and grain filling)

(Doorenbos & Kassam, 1979). In this study we decided to use the same

period (i.e. weeks) for all pixels within individual administrative units.

Moreover, we do not shift this period between different years.

To determine the most sensitive period we first derived the start of

season (SOS) and end of season (EOS) from the GIMMS NDVI time

series. For thisweused the 50%-thresholdmethod ofWhite et al. (1997)

and implemented it in the samewayasVrielinget al. (2008). In short, for

each pixelwefirst determineper year themaximumNDVI value and the

preceding minimum NDVI value. SOS is the moment between

maximum and minimum when NDVI reaches the average between

maximum and minimum (i.e. 50% threshold). EOS is the moment after

maximum when the NDVI-curve again reaches the same level (Fig. 1).

For consistency in the multi-year analysis and within administrative

units, the SOS and EOS-values were averaged for all years and all pixels

within a unit. A double seasonwasonly retained for thoseunitswhere at

least 50% of the pixels allow for a good separation between two seasons

(i.e. two clear minima and maxima).

A modification was done subsequently to the EOS (Fig. 1). The

developmental stages at which crop plants are more sensitive to

water deficit are the vegetative stage, the flowering and the grain

filling (Doorenbos & Kassam, 1979). Restrictive water supply during

these stages may affect productivity more severely than during other

periods (establishment or ripening). The retrieved SOS generally

coincides with the start of the crop development stage, approximately

25–30 days after crop planting according to our knowledge of African

agriculture. This fact is due to the seasonal lag of NDVI response with

respect to rainfall and varies for vegetation type in tropical Africa, i.e.

1–3 weeks in Equatorial rainforest, 2–6 weeks in the wet savanna and

about 6–9 weeks in the dry savanna (Shinoda, 1995). Traditional

rainfed farmers in Africa generally use the onset of the rainy season for

crop planting. Normal planting time in Southern Africa is October–

November, in the Sahel June–July, and in Eastern Africa, where double

seasons are found, February–June. For EOS, the modeled values

include the ripening stage that is less sensitive to water stress. To

SOS EOS
EGF

E

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 50 100 150 200 250 300 350

Day of the year

N
D

V
I

CD RY

Crop cycle (180 days)

Planting

F

Fig. 1. Sample NDVI profile showing the period of analysis defined by the start of the

season (SOS) and the end of the grain filling stage (EGF). The EGF is defined by the end of

the season (EOS) minus 6 weeks (42 days). The crop cycle is divided into 5 development

stages: E: establishment, CD: crop development, F: flowering, Y: yield formation or grain

filling and R: ripening stage. Where CD, F and Y are the most sensitive to water deficit.
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adjust the period of analysis to the most sensitive water stress stages

of the crop, we subtracted 6 weeks from EOS. In this way we identify

an end date at the end of the yield formation or grain filling stage

instead of using the harvesting time (EGF = EOS−6 weeks) (Fig. 1).

For each pixel and individual year, the weekly VHI values between

the mean SOS and EGF were averaged to obtain a representative value

of VHI for the drought-sensitive part of the crop season (temporal

aggregation). This method takes into account the cumulative

development of drought over a period of time. At pixel level the VHI

average was only calculated if at least 75% of the crop season values

were present. Otherwise, the pixel was treated as “missing data”. In

practice the only pixels with missing data are those in seasons with

incomplete VHI data (1981/82 and 1994/95).

2.2.4. Geographic VHI aggregation

The temporal VHI aggregation was first carried out at pixel level

(16×16 km) to identify drought prone areas across the whole African

continent. In a second stage, in order to directly identify the

administrative units affected by agricultural drought, we determined

which percentage of the unit's agricultural area experienced VHI values

below 35 during the crop season. This threshold was introduced by

Kogan (1995) to identify drought conditions. Heobtained this threshold

correlating the VCI with different crop yields and diverse ecological

conditions and found a logarithmic fit between VCI and crop yield with

an r-square of 0.79.

Within each administrative unit, the analysis was limited to

agricultural areas based on the crop mask described in Section 2.2.2.

Only pixels covered at least for 25% by the cropmaskwere considered.

A weighted average (with weights based on percentage covered by

crop mask) was calculated for each administrative region. Regions

were excluded in case less than 10 valid pixels were present, i.e. pixels

having both a valid average VHI value and are covered for at least 25%

by agriculture (Genovese et al., 2001).

The final results were aggregated at sub-national administrative

level because this allows easy comparison with existing agricultural

production statistics. For some countries (like Burundi, Rwanda, and

Uganda) the administrative units are rather small and comprise a

limited number of pixels, thus sometimes not allowing for effective

VHI aggregation. In these cases however, we preferred to apply the

existing administrative borders instead of creating artificial units. The

results of the temporal and spatial VHI aggregation are 29 (1981–

2009) annual maps showing the percentage of agricultural area

affected by drought for each administrative unit.

2.2.5. Probability mapping

In order to compute the probability of drought affecting significant

portions of the agricultural area of each administrative unit, we

GIS extraction
Administrative regions (GAUL) 

Phenological-model 

(Average SOS and GFS) 

Input data Process and tools Intermediate and final out puts

VHI (1981-2010) 
Weekly data 

16 km resolution

29 crop season maps with the percentage of agriculture area 
at Sub-national level affected by drought 

VHI < 35

PERIOD OF ANALYSIS 30 years (1981-2010) 

Agricultural crop mask 
(FAO crop zones x GLC2000) 

Empirical probability to have 
more than 30% or  50% of 

agriculture area at Sub-national 
level affected by drought

29 VHI crop season 

average images 

GIMMS NDVI 
(1981-2006)
15-day data 

8 km resolution

Fig. 2. Methodological flow-chart.
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introduced two minimum arbitrary thresholds, one of 30% and

another of 50%. In practice, when over 30% of the total agricultural

area of an administrative unit is affected by drought, we assume that a

large number of agriculture households experience its consequences.

When more than 50% of agricultural area is affected by drought, we

can assume to be confronted with an extreme drought event with

SOS
EGF

A B C

Fig. 3. (A) Agricultural crop mask considering the main FAO crop zones and masking out the forest using GLC2000 for the following annual crops: pulses, sorghum, wheat, millet,

maize, niebe, teff, yams, rice and barley. (B) The start of crop development stage by administrative unit (C) end of the grain filling stage by administrative unit. In maps B and C a

monthly color scale was used only for graphic representation, operationally a weekly time step is used.

Percentage of the agriculture areas with VHI 
below 35

35                  50             85
Low High

Vegetation Health Index (VHI)

A B

Fig. 4. (A) Average VHI image for the crop season 1983/84 (B) percentage of agricultural area affected by drought (VHIb35) based on (A). The average crop season VHI shows the

temporal impact of drought while the percentage of affected agricultural area explains the spatial dimension of the drought.
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serious impact on regional food security. We assume that the

occurrence of a certain percentage of area affected by drought in

year “t” is independent on climate in other years. If P is the probability

of a drought event, the number n of years that the event happens in a

period of N years follows a binomial distribution (Evans et al., 2000); P

is estimated by P ̂=n/N and a confidence interval for P is: (Stuart &

Ord, 1991; von Storch & Zwiers, 1999)

P∈P̂ # 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P̂ 1−P̂ =N
"

r

ð4Þ

Fig. 2 summarizes the data analysis steps in amethodological flow-

chart.

3. Results

3.1. Crop mask, SOS and EGF

Fig. 3 shows (A) the cropmask developed for this study; (B) the start

of the crop development stage (that coincides with the start of the

season of the phenological model, SOS) and (C) the end of the grain

filling stage. In general the phenological model better reflects crop

phenology of the relatively homogeneous crop areas in places with a

short rainy season like the Sahel, than of the more complex crop

associations in areas with a longer rainy season such as Eastern

(Ethiopia and Southern Sudan) and Southern Africa (Mozambique and

Madagascar). On the other hand, the phenological model detected the

climate pattern differences in South Africa between the Western Cape

crops (wheat and barley), which are cultivated fromMay to November

and the crops in the Eastern part of South Africa (e.g. maize, sorghum,

millet…) which grow fromOctober toMay. Both SOS and EGF have also

been calculated for areas that have a clearly defined second crop season

(Eastern Africa and some countries in the Guinea Gulf).

3.2. Average VHI for the crop season and percentage of agriculture area

affected by drought

Fig. 4 shows an example of the transformation of VHI averaged

during the crop season 1983/1984 at pixel level into the percentage of

agricultural areas affected by drought (VHI below 35) at sub-national

level. Averaging the VHI during the crop season shows the drought

persistence during the cropping season. In addition, by calculating the

percentage of drought-affected agricultural area, we analyzed the

spatial impact of the drought at sub-national level for each crop

season during the study period. The temporal and spatial aggregations

give a good estimate of the drought intensity during the most water

stress sensitive stages for crops. Fig. 5 presents the percentage of

agricultural area affected by drought for each crop season from 1982/

83 to 2009/10. All the major drought events suffered by the African

continent and reported in Table 1 can easily be identified at different

geographic scales in Figs. 5 and 6. For example the droughts that hit

the Sahel during the 1980s are clearly observable, and the worst

drought that occurred during the year 1984 was well indentified

(Gommes & Petrassi, 1994). This drought affected most Sahel

countries, as well as the lowlands of Ethiopia and the main maize

productive areas of Kenya. It was one of the most extensive droughts

in the Sahel which reached well into Eastern Africa. Another

impressive drought well detected by the proposed methodology

occurred in Southern Africa during the cropping season 1991/92.

Gommes and Petrassi (1994) mention that most of the Southern

Fig. 6. Area affected by drought (VHIb35) at different scales of analysis: (A) Continental: themajor drought occurred in 1991 (48% of agricultural area affected) followed by the 1982

drought (28%). (B) Regional: Western Africa affected from 1982 to 1998; all regions seriously affected by the drought in 1991 and Eastern Africa most affected during the 2000s.

(C) National: Comparison of area affected in three countries: Morocco, Mozambique and Kenya. (D) Sub-national: Comparison of area affected by drought at the sub-national level in

Kenya.
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Africa countries were severely affected by the 1991/92 drought, which

was the most severe after the 1982/83 event, the latter having been

the worst since the 1920s. Other examples of detected events relate to

several North African countries which experienced serious drought

events during the 90s such as Morocco (1992, 1995 and 1997) and

Algeria (1997). For the analyzed period (1981–2009) the 1991/92

drought is clearly the largest drought that the Africa continent has

suffered, affecting Southern Africa, part of Western Africa, and part of

Eastern Africa (Fig. 5).

Fig. 6 shows the percentage of area affected by drought using

different scales of analysis: continental, regional (we use the regions

proposed by the Africa Environment Outlook http://www.unep.org/

dewa/Africa/publications/aeo-1/009.htm), national (Morocco,

Mozambique and Kenya) and sub-national (Kenya). The analysis

done at different scales proves the flexibility of the methodological

approach proposed in this paper, allowing international institutions

interested in drought monitoring an easier understanding of the

relative importance of local droughts. Knowing the extension and

intensity of a drought a continental scale could facilitate the targeting

of donor resources among drought-affected countries in Africa. In a

country level the method provides a way of quickly assessing the

magnitude of the current drought as compared with historical records

(as can be seen for example in Fig. 6C, 1995 was clearly the worst

drought in Morocco over the last 30 years). Finally, the sub-national

level analysis shows the impact of localized drought on the national

production and helps planning food-aid intervention measures by

integration with other socioeconomic factors (population, livelihood,

etc.) for the region affected.

3.3. Empirical probabilities at sub-national level

Fig. 7 shows the probabilities of exceeding the thresholds of 30%

and 50% of the total agricultural area affected by drought. These

thresholds can be modified depending on the objective of the study.

For instance in an agricultural insurance scheme when fixing the

insurance premium, the area affected could be correlated with the

anticipated economic losses following the drought. For food security

projects, the thresholds could be related with the number of people

affected and the number of rations needed to overcome the food-gap.

B2

A1 B1

A2

Probability in % of 
having 30%(A) or 
50% (B) of agric. 

areas with VHI<35

Fig. 7. Probability of occurrence of having more than 30% (A) or more than 50 % (B) of the agricultural area affected by drought by administrative unit (1) during the first crop season

(2) during the second crop season.
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Extreme agrometeorological events are at the same time rare (low

statistical frequency) and characterized by high intensity (Gommes,

1999). The extended droughts of 1984 and 1991/92 that occurred in

the Sahel and Southern Africa, were exceptional because they were

intense and involved large clusters of administrative units at the same

time, representing extraordinary events at the continental level.

However the situation changes when the analysis is focused on the

agricultural area affected by drought at sub-national level because

from this perspective, all droughts are relevant and important. For

instance several local “hot spots” were identified with empirical

probabilities above 35% (3.5 times every 10 years) to have at least 30%

of agriculture affected (Fig. 7-A1): Tensift and Centre in Morroco,

Brakna in Mauritania, North Darfur in Sudan, Semenawi Keih Bahri in

Eritrea, Coast and Eastern in Kenya, Manyara, Tanga, Arusha and

Kilimanjaro in Tanzania, Juba Hoose, Juba Dhexe and Shabelle Hoose

in Somalia, Kaabong and Kiruhura in Uganda, Southern in Sierra

Leone, Gbarpolu in Liberia and Otjozondjupa in Namibia.

4. Discussion and conclusions

In general the developed methodology proved useful to identify

major historical droughts over the observed period (1981–2009), as

well as for identifying the impact of these events on agricultural areas

over the whole African continent. Furthermore it was possible to

geographically identify the administrative areas exposed to high risk of

drought. These results should be analyzed considering socioeconomic

factors, such as population increase and livelihood strategies, to have a

more comprehensive assessment of the vulnerability of local popula-

tions to these droughts. For instance, the rapid population growth in

Africa,which has placed extremepressure on scarce land resources, and

a lack of access to the assets is increasing the vulnerability of many

regions to drought. In these areas, where smallholder livelihoods are

undiversified and are dominated by subsistence-oriented food crop

production, even a moderate drought that will cause a decline in

harvests can be devastating for household food security.

It is also evident that per-pixel analysis of drought indicators is

only useful for the detection of major (historical) droughts if the

temporal integration is coupled with spatial aggregation. In this case

we looked specifically at agricultural drought, but depending on the

drought impact on other land use categories (forest, pastoralist areas,

protected areas, etc.) the same methodological approach could be

applied with minor adaptations.

The results shown in Figs. 5 and 7, provide a powerful tool for early

warning and agricultural monitoring systems to quickly identify

drought-sensitive areas at a continental or regional level, and to refine

the analysis locally by analyzing drought indicators at pixel level or

using more precise local data. Rainfall-based indices can be used for

these areas if good quality records are available, otherwise the

drought probability maps could be helpful in identifying new

locations for rainfall stations for drought monitoring. For early

warning and agricultural monitoring the proposed methodological

approach could be adjusted to be run on a continuous basis. The SOS

date could be calculated in real time (varying from year to year) and

the VHI would be averaged weekly until reaching the EGF date. Every

week during the crop season the percentage of area affected by

drought could be calculated. In this way, the percentage of area

affected by drought (e.g. 30%) could be linked to a temporal condition

in order to establish the best date for issuing a drought warning (i.e.

when at least 50% of the length of the crop cycle is reached). As a

confirmation of this approach it can be observed that the results of the

first crop season 2009/10 for East Africa, are in line with the drought

warnings included in several early warning reports for the same area

(Famine Early Warning System (FEWS-NET) http://www.fews.net/

docs/Publications/kenya_09_2009_final.pdf, Monitoring Agricultural

ResourceS (MARS), http://mars.jrc.ec.europa.eu/mars/content/

download/1452/8205/file/EA_Kenya_July_2009.pdf).

For the areaswith a second crop season, the second season generally

shows a higher probability to suffer fromdrought. In East Africa this is in

linewith the fact that the second crop season (approx. October-January)

is normally the shorter one, corresponding to shorter and more erratic

rainfall than during the first crop season (approx. April–September).

The method presented in this study could be used in a more

detailed way by looking at specific areas or countries and using

detailed information on annual crop cycles instead of modeling the

average crop cycle. At regional or country level, instead of GAUL level

1 aggregation, the pixel level product (Fig. 4A) could be used as such

or aggregated by any other administrative or thematic zoning used for

food security monitoring.

Finally, climate change is likely to increase the risk of droughts in

many parts of the continent, with declining and more erratic rainfall

resulting in lower aggregate production and more unpredictable

harvests in Africa (Boko et al., 2007). The final drought probability

represents a preliminary input for more detailed climate change

analysis and prediction. The areas with high drought probability

should be closely monitored and should have special contingency

plans to reduce drought impact. Although in this study some

geographic dynamics of drought events is apparent, i.e. concentrated

in the Sahel during the 80s and in Southern Africa during the 90s, the

period of analysis is too short to relate this to climate change.
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